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Abstract

This paper focuses on detecting a small open crack in an axially vibrating beam with viscous boundary
conditions by using non-destructive dynamical measurements. The damage is simulated by an equivalent
linear elastic spring. It is shown that the measurement of the changes in a suitable pair of eigenvalues leads
to the solution of the diagnostic problem, namely identification of crack location and severity. Results
apply to uniform beams under various sets of boundary conditions.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Dampers are frequently used in designing structures under dynamic excitation. These devices
are employed not only in the field of vibration isolation, but also in the one of passive and active
control of the response of a vibrating system. Their aim is to dissipate a part of the vibrating
energy, and by way of this they lead to a reduction in response amplitude and in force
transmissibility, allowing for simpler and lighter structural designs.

Within the class of viscously damped structures, the system consisting of a bar with viscous end
dampers plays an important role, since it represents the critical component of many mechanical
systems, such as machine tools, car wheel suspensions, crank shafts of internal combustion
engines, etc. [1,2]. The integrity of this kind of mechanical component is often crucial to guarantee
the good performance of the whole system. As a consequence, it becomes important to develop
non-destructive techniques for such a class of structures, so that possible damages—Ilike small
cracks—may be identified as soon as they arise.
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Despite the very extensive literature on damage identification based on dynamic measurements
(see [3,4] for recent and complete state of the art), most of earlier works dealing with cracked
beams consider undamped systems only. Moreover, even if studies on the dynamic behaviour
of (undamaged) beams with dissipative boundary conditions of a viscous type were produced
long ago [5-10], research works on the effect of cracks on the dynamic behaviour of such
dissipative systems are very rare and, to the best of the authors’ knowledge, have not been
published yet.

This paper focuses on detecting a small open crack in an axially vibrating beam with viscous
boundary conditions from the knowledge of damage-induced shifts in a pair of eigenvalues. As in
Freund and Herrmann [11] and in Cabib et al. [12], the crack is simulated by an equivalent
massless linear elastic spring, of constant stiffness K, connecting the two segments of the beam
adjacent to the damaged cross-section. Assuming that the undamaged system is completely
defined, only two parameters need to be determined, namely the stiffness K of the spring and
abscissa s of the cracked cross-section. Therefore, it is reasonable to investigate the extent to
which the measurement of the crack-induced changes in a pair of eigenvalues can be useful to
identify damage. It is found that for uniform free-damped beams under axial vibration, roughly
speaking, knowledge of the ratio between the imaginary part of the variations of the 2 mth and
mth eigenvalues uniquely determines the position variable S=cos2mmns/L, where L is the length
of the rod. Furthermore, the variation of the same pair of eigenvalues enables one to estimate the
stiffness K of the damage-simulating elastic spring. In both cases, simple closed-form expressions
are deduced for S and for K. The results above also apply to uniform axially vibrating rods with
equal viscous dampers at both ends. As for uniform fixed-damped rods, by simultaneously using
axial frequencies related to different boundary conditions, it is still possible to determine uniquely
the damage parameters S and K.

The present study is along the line of the research developed in Refs. [13,14] to identify cracks in
undamped beams from frequency measurements. In particular, the explicit expression for damage
sensitivity of eigenvalues, which was obtained following the perturbation method presented in
Ref. [15], plays a crucial role in this analysis. As a consequence, the procedure applied here does
not call for an explicit solution of the eigenvalue problem for the damaged system, as it uses only
knowledge of the eigensolutions corresponding to the undamaged configuration.

Dynamic tests performed on simulated cracked beams supported the proposed method for the
solution of the diagnostic problem in practical situations. Numerical results show that if the
eigenvalues used as data in identification are affected by errors that are relatively small with
respect to damage-induced changes in the eigenvalues, damage identification leads to satisfactory
results.

2. Eigenvalue sensitivity to damage

Consider a thin straight elastic rod of length L with constant cross-section of area 4, Young’s
modulus £ and uniform linear mass density p. Assume, for definiteness, that the beam’s left end is
free and its right end is constrained by a lumped linear damper of viscous damping coefficient
c>0.
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The infinitesimal, free longitudinal vibrations of the rod are governed by the following
equation:

>Pw  Pw
AP >
EA622 Pop 0, ze(0,L), t>0, (1)
with boundary conditions
Free (F):
0
0. =0, 1>0, 2)
0z
Damped (D):
0 0
EAZH(L.0) + ¢SHL,1) =0, 1>0, 3)
0z ot

where w=w(z,?) is the longitudinal displacement of the bar at the cross-section of abscissa z and at
a moment of time ¢. The dynamic problem is completed by assigning some initial conditions, at
the moment of time #=0, on w and Ow/0t in the whole interval [0,L].

The dimensionless eigenvalue problem related to problems (1)—(3) is given by

u'(x) — 1Pu(x) =0, xe(0,1), (4)
' (0) = 0, (5)
W) +y uu(l) =0, (6)

where © = u(x) is the spatial variation of the free longitudinal vibration of the undamaged rod (see
[7,8]) and where u/=du/dx.
The dimensionless quantities x, 4> and y are defined as follows:

z pL? ~1/2
= ~¢(0,1 2=C) = c(EAp) "2,
x=2eO1), W="2 g = dEap) ™
Under the assumption that y< 1, the mth eigenpair (u,,(x),uz) of the undamaged rod is given by
1. (I—y) . .
== In +mrn=E¢+1w,,, m=0,+1,+2, ..., 8
o = 5 I ¢ ®)
Up(x) = Ay cosh p,,x, m=0,+1,+2,..., 9)

where i = y/—1 is the imaginary unit. Hereafter 4,, denotes an arbitrary complex number.
For y>1 the mth eigenpair is given by

L.o-1
=—In
:um 2 (,y_i_ 1)

Note that if y=1 there is no spectrum at all, see [6, p. 12]; [7, p. 366] for a physical interpretation
of this behaviour. To fix ideas, and considering that this is a common situation in practice, the
condition y<1 will be assumed hereafter.

Suppose now that a crack appears at the cross-section of abscissa s€(0,L). Assuming that the
crack remains always open during the longitudinal vibration, by modelling it as a massless

+ ig(l £2m),  Up(x) = Ay cosh @, x, m=0,+1,+2, ...
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translational spring, at z=s, as suggested in Refs. [11,12], the dimensionless eigenvalue problem
for the damaged rod is as follows:

ui(x) — pug(x) =0, xe(0,0)u(a, 1), (10)
uy(0) =0, (11)

[ua(0)] = euy(o), (12)

[1y()] = 0, (13)

(1) + 7 1y ug(1) =0, (14)

where u,=u,(x) is the spatial variation of the longitudinal displacement in the damaged beam and
o=s/L is the normalized location of the crack. In Egs. (12) and (13), [¢(c)]=(d(c " )—p(c7))
denotes the jump of the function ¢=¢(x) at x=¢. The expression ¢ is given by

SZ(EA—K/L), (15)

where the spring stiffness K may be related to crack geometry as suggested, for example, in Refs.
[11] or [16]. The undamaged system corresponds to K— oo or ¢ —0. It can be shown that also for
the eigenvalue problem (10)—(14) there is an infinite sequence of simple eigenvalues corresponding
to the roots of the characteristic equation

0 = (sinh g + y cosh u) + eu sinh po(sinh u(1 — o) + y cosh u(1 — 0)). (16)

If the crack is small, namely ¢ is small enough, then the first variation of the eigenvalue y2, with
respect to ¢ may be found as shown in Ref. [15]. Assuming

Ham = 1, + e(AL), (17)
the first order variation of the mth eigenvalue with respect to ¢ is given by
3ty,) = e(Apty,) = &1t (0))’, (18)
m=0,+1,+2, ..., where the normalizing condition
/01 122,(x) dx+%(”’”(1))2 =1, (19)
m

is taken into account. Similar to the ideal undamped case, the first order change in an eigenvalue
produced by a single small crack may be expressed as the product of two terms, the first of which
is proportional to the severity of damage and the second only depends on the location of damage.
This second term is the square of the first derivative of the corresponding mode shape of the
undamaged rod evaluated at the cracked cross-section. However, concerning the problem of
damage identification, there is a substantial difference between the undamped case and the
dissipative case considered here. In fact, the mode shape of the undamaged rod is now a complex
value function and this fact has a strong influence on the damage detection procedure, as it will be
shown in the next section.
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3. Crack detection results

The problem of identifying a single small crack from the knowledge of damage-induced changes
in the eigenvalues of an initially uniform vibrating rod with dissipative boundary conditions will
be considered here. In particular, under the assumption that the undamaged system is completely
defined and with damage simulated as in Section 2, Egs. (12) and (13), only the stiffness K and
abscissa s of the cracked cross-section need to be determined. Therefore, changes in a (suitable)
pair of eigenvalues will be considered in identifying damage. The key point of the identification
technique is the explicit expression (18) for damage sensitivity of eigenvalues derived in the
previous section. Eq. (18) has in fact an important consequence: the ratios of the change in two
different eigenvalues depend only on damage location, not on its severity.

The case of a free-damped (F-D) rod is considered first. With reference to the dimensionless
eigenvalue problems (4)—(6) and (10)—(14) corresponding to the undamaged and damaged rod,
respectively, the quantity CE—? is defined as follows:

F-D _ 5(,“5170)2 (20)

= B )
" (uE=P)

m=0,+1,+2,..., where 5(u5[0)2 has expression (18). Putting expression (8), (9) of the mth
eigenpair of the (F-D) rod into Eq. (20) gives

2 mno + isinh éo cosh Eo sin 2mmo), (21)

C,'Z’D = s(sinhz o cos® mna — cosh? Eo sin
where ¢ =s/L and ¢=(EA/L)/K are the dimensionless location and severity of damage, and
¢ = Re(uf~P) is defined as in Eq. (8).

In order to identify damage, it is convenient to deal with the imaginary part of C=2’s, m#0.
Let it be assumed that Im(CE~P)£0 for a certain m+#0. Then, by using standard trigonometric
identities, from expression (21) it follows that

F-D
1 Im(G5,, (22)

S = cos 2mno = EIm(C,’;*D)’

namely, if Im(CE~P)#0, the measurement of the pair {Im(C}, ), Im(C5,”)}, m#0, uniquely
determines the variable S = cos 2mno of the normalized damage location ¢. Note that the sign of
m does not affect the localization result. Moreover, for those values of ¢ such that |S|=1, it turns
out that Im(CE~P) =0, and then Se(—1,1). Therefore there are exactly 2|m| possible crack

locations oy, k=1,...,2|m|, corresponding to the same ratio Im(C}?)/Im(CE~P). These damage

2m
locations are symmetrically placed with respect to the mid-point of the rod, namely to every
generic crack location oy corresponds its symmetric a5 '™ = oy _x+1, k=1,...,2|m|. As for the

“ideal” undamped case discussed in Ref. [13], the number of possible crack locations for a given
measurement pair increases as the order of the modes assessed increases. This fact accounts for the
recourse to “low” frequencies as optimal setting for the problem of damage localization. In fact,
for |m| =1, crack location can be uniquely determined from Eq. (22), except for a symmetrical
position.
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By inserting the expression of a possible damage location, say oy, k=1,...,2|m|, into the
expression of Im(C%~P), the corresponding damage severity ¢, can be determined

Im(CH~P) = ¢ sinh oy cosh Eay, sin 2mnay. (23)

Since sin2mno oy, —i+1) = —sin(2mmnoy), k=1,...,2|m|—1, and £<0, Eq. (23) gives 2|m| values of
&, half of them are negative, the remaining half positive. More precisely, é&rers <O,
k=1,...,2|m|—1. Then, since the only physically plausible values of ¢, are the positive ones,
half of the possible 2|m| damage locations identified from Eq. (22) can be discarded. For example,
if Im(szD) >0 and sin(2mmna;) > 0, the only possible damage locations are 5,04, ..., 02|, This
fact has an important consequence in the simplest situation where |m| =1, because it implies the
unique determination of crack location from the knowledge of ratio Im(C} ?)/Im(CE~P). 1t is
worth noticing that there is not a direct analogue of this property in the undamped case.

Suppose now that Im(CL~P) = 0 for a certain m#0. From expression (21) it easily follows that
S=1, i.e., the possible damage locations are oy = k/2|m|, k=1,...,2|m|—1. Damage severity can
be identified by substituting 6 =gy, k=1,...,2|m|—1, into the expression of the real part of CZ‘D.
A direct calculation shows that

Re(CIP) = %"((— 1) cosh 2¢a, — 1). (24)

The expression within brackets is positive for even k and negative for odd k. Then, &rery <O,
k=1,...,2|m|—2, and reasoning as before (|m|—1) or |m|, depending on the case, of the (2|m|—1)
possible damage locations ox = k/2|m| can be discarded.

The case when both ends of a rod are constrained by a lumped linear damper of equal viscous
coefficient ¢ can be included in this discussion. Within the usual notation, the eigenpairs of the
axial vibrations of a damped—damped uniform rod (indicated with D-D hereafter) are given by

D-D __ 1=y
o =)

+imn = PP +iwd P, (25)

u,Z_D(x) = A,,(y sinh uﬁ_Dx + cosh ,uﬁ_Dx), m=0,+1,+2, ..., (26)

where 7 is as in Eq. (7);, y <1. By inserting expressions (25), (26) into Eq. (20) and after some easy
calculations, the quantity C2~? can be written as

C,?Z_D = ¢[(y cosh &a cos mna + sinh Ea cos mna)>

— (y sinh &o sin mno + cosh &o sin mno)*
+ i(y cosh &g + sinh Eo)(y sinh o + cosh £a)sin 2mna], (27)

m=0,+1,42,..., where it is set £ = PP to simplify notation. Taking into consideration the
expression of the imaginary part of C2~s; we formally have the same situation as the
corresponding F-D case, see Eq. (22), so that all the remarks made in that case can be extended to
this one. For example, if Im(CP~P)#0, then the measurement of the pair {Im(C5, ?), Im(C5,.”)},
m#0, uniquely determines the variable S = cos 2mno of damage location:

_ 1Im(G5P)
~ 2Im(CP-Dy

m

N (28)
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The estimate of damage severity follows as before from the imaginary part of C2~P. Since the
system is symmetric in the undamaged state, a crack located at any one of a set of symmetrically
placed points of a D—D rod will produce identical changes in eigenvalues. Nevertheless, a careful
study of the Im(CP~P) expression appearing in Eq. (27), the details of which are omitted for
simplicity, enables to show that the factor term (y cosh o + sinh &a)(y sinh £o + cosh o) is an
odd function of ¢ with respect to ¢ = % Therefore, half of the possible damage locations, for
|m| =2, can be discarded in this case too, because they correspond to negative damage severity.

The analysis has hitherto been related to axially vibrating rods with F—D and D-D ends, and it
demonstrated, among other things, that the first two eigenvalues allow the crack to be uniquely
identified. Such a result does not prove true for clamped—damped boundary conditions (C-D), a
quite common situation in applications. In this case, however, by simultaneously employing
eigenvalues related to different boundary conditions it is still possible to identify damage.

The eigenpairs of a C-D uniform rod are given by

c-D _ (I—V) 2m+1 1= 0P 4 iCP

- 1w , 29
uP(x) = A, sinh u$Px, m=0,+1,42,.... (30)
The quantity CS=2 = —5(uS)*/(u$~P)* is equal to
Crg’D =g 5(1 + cosh 2¢0 cos(2m + 1)no) + isinh o cosh Eo sin(2m + 1)no |, (31
where ¢ = EPIf, for example, Im(CS—2)#0, from (21) and (31) it follows that
_ 1 Im(C5, %)

S" = cos(2m + 1)no = 7 Tm (CC-Dy (32)
m=0,+1,+2,.... Thus, from the knowledge of mth eigenvalue in a cracked rod under boundary
conditions C—D and (2m+ 1)th eigenvalue under boundary conditions F-D, it is possible to
uniquely determine the position variable S’ = cos(2m + 1)no, m=0,4+1,42,.... In particular,

Eq. (32) implies that damage location is uniquely determined by the measurement of the pair
{Im(C§P), Im (CF )} corresponding to the fundamental eigenvalues for C—D and F-D cases.
Note that C§ P is always different from zero. Damage severity can be determined as in the F-D
case, see Eq. (23) and following remarks. Also in the present case, by leaving out all the locations
o, which correspond to negative values of damage severity &, half of the possible 2|m| damage
locations identified from Eq. (32) can be discarded.

If now Im(Cg_D) = 0 for a certain |m|>1, then there are 2|m| possible damage locations, i.e.,
or = k/(1 +2|m|), k=1,...,2|m|. As in the analogous situation for the case F-D, the real part of
CE~P gives damage severity ¢, corresponding to crack position gy

Re(CCP) = %"[(—1)" cosh 2¢ay + 1]. (33)

As before, considering the sign of ¢;’s, half of the possible damage locations can be omitted.
So far, an analysis of the diagnostic problem has been developed under the assumption that the

damping coefficient y is strictly less than one. It can be shown that similar results hold true for the

case y > 1. In brief, it turns out that the treatment of the C—D case with y>1 formally coincides
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with that of the F-D case with y <1, and vice versa the treatment of the F—D case with y >1 can
be formally extended to the C—D case with y < 1. The discussion of the D-D case for y > 1 follows
exactly the same lines as the D-D case for y <1.

Finally, it should be observed that the assumption of small damages restricts the range of
application of the proposed method to cracked configurations that are a perturbation of the
undamaged one. However, this is not a severe limitation, because in most practical situations it is
crucial to be able to identify damage as soon as it arises.

4. Applications

In the previous section, it was shown how the measurement of a pair of eigenvalues of a
dissipative vibrating rod with a single crack could be used to assess the location as well as the
magnitude of damage.

As it is well known, eigenvalue estimates in experimental applications are based on the
knowledge of the transfer function expression of a system (which will be indicated by TF
hereafter). Then, the determination of the TF is a crucial point of the analysis. Regarding the
undamaged F-D vibrating rod considered in Section 2, for example, it can be shown that the TF-
receptance between the excitation point located at the right end, z, = L, and the axial response at
the cross-section of abscissa z; is given by the expression

pcoshsz; 2¢° 1 1 <A 1
R N (s gy Rk R D Do et NG
where s is the complex variable. To prevent the reader’s attention from being drawn away from
the main line of the analysis, some details on the derivation of Eq. (34) are presented in the
appendix. With the exception of s = 0, the poles of H(s, z;,z, = L) are the eigenvalues p,, given in
Eq. (8). In practical applications, modal analysis techniques might be applied to extract the
eigenvalues from TF measurements in a chosen frequency range, see [17]. It is worth noticing that
if the determination of the TF is a standard issue for self-adjoint vibrating systems, the TF
evaluation presents additional difficulties for non-self-adjoint systems such as the ones
investigated in this paper. This fact may explain a recent interest of the specialized literature in
finding closed-form expressions for the TF of dissipative vibrating systems, see, for example, [8.9].
Some numerical applications of the proposed diagnostic technique will be presented now. The
inverse problem of damage detection is solved for different cases, using pseudo-experimental data,
i.e., the eigenvalues are obtained from the direct problem in undamaged conditions and in some
damaged conditions. To give an idea of the results obtained, some applications to rods under F—D
boundary conditions will be presented hereafter. Identification results are shown in detail for a
damage location corresponding to ¢=0.400. They are illustrative of the main features of the
inverse problem and of the identification technique. Three different levels of damage are
considered. The first case, ¢=0.02, is characterized by “small” damage, i.e., the value of stiffness
K is such that the variations of the real and imaginary part of the first few eigenvalues are about
10% and 1.5% of the initial values, respectively. The second case (“‘moderate” damage) and the
third case (“‘severe” damage) correspond to variations of the same quantities of about 15%, 7%
and 15%, 16%, respectively.
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In order to take into account the effect of the damping coefficient on identification results, three
levels of damping, y=0.05, 0.35, 0.50, are selected among several cases studied and considered in
detail.

The eigenvalues for the undamaged beam and their values associated with the cases of damage
are shown in Table 1. The latter were obtained as complex roots of the characteristic Eq. (16).
Concerning the effect of a crack on the eigenvalues of the rod, there is a substantial difference
between the ideal undamped case and the case with dissipative boundary conditions considered
here. As it is well known, the variational formulation for the undamped case shows that
eigenvalues of the system are decreasing functions of &, i.e., damage decreases the (real) natural
frequencies. This monotonicity property in general does not apply to a vibrating system with
dissipation. In fact, within the class of small cracks, the explicit expression (18) for damage
sensitivity derived in Section 2 shows that no general monotonicity property of the first order
variation of eigenvalues is expected to hold.

In Fig. 1 the effect of a crack of “moderate” severity (¢=0.08) on the real and imaginary parts
of the first four eigenvalues of the F—D rod is presented. Plots show that a single crack can reduce
or increase, depending on the crack position, the real and the imaginary part of an eigenvalue. An

Table 1
Dimensionless eigenvalues (i, of a uniform rod under F—D boundary conditions for different damage severity ¢ and
damping coefficient y (eigenvalue problem (10)—(14))

Mode Undamaged (1) Damage D1 (2) Damage D2 (3) Damage D3 (4)

(a)

1 —0.050+13.142 —0.048 +13.086 —0.044+12.928 —0.038+12.658

2 —0.050+1i6.283 —0.052+i6.241 —0.057+i6.124 —0.065+15.939

3 —0.050+19.425 —0.046+19.359 —0.035+1i9.163 —0.019+1i8.830

4 —0.050+112.566 —0.052+112.347 —0.059 +i11.815 —0.069+111.236
5 —0.050+i15.708 —0.050+i15.708 —0.050+i15.708 —0.050+115.709
6 —0.050+118.850 —0.045+118.512 —0.037+i17.671 —0.033+116.820
(b)

1 —0.365+i3.142 —0.354+13.085 —0.322+i2.926 —0.275+i2.652

2 —0.365+16.283 —0.380+16.240 —0.419+i6.123 —0.474+15.937

3 —0.365+19.425 —0.336+19.361 —0.252+1i9.169 —0.135+1i8.837

4 —0.365+112.566 —0.381+i12.343 —0.431+i11.803 —0.509 +i11.223
5 —0.365+115.708 —0.366+115.715 —0.367+i15.735 —0.375+115.779
6 —0.365+118.850 —0.330+i18.505 —0.268 +i17.644 —0.234+116.749
(c)

1 —0.549 +i3.142 —0.531+13.085 —0.483+i2.923 —0.410+i2.645

2 —0.549+16.283 —0.572+16.240 —0.632+16.121 —0.715+15.933

3 —0.549+19.425 —0.505+19.364 —0.376 +19.178 —0.197 +18.845

4 —0.549 +112.566 —0.573+112.337 —0.650+i11.787 —0.768 +i11.208
5 —0.549 +115.708 —0.550+i15.723 —0.555+115.771 —0.591+115.877
6 —0.549+118.850 —0.495+118.497 —0.399 +i17.608 —0.323+116.650

Abscissa of the cracked cross-section: ¢ =0.400. Configurations: (1) Undamaged, ¢=0; (2) Damage D1, £¢=0.02; (3)
Damage D2, ¢=0.08; (4) Damage D3, ¢=0.20. Levels of damping: (a) y =0.05; (b) y=0.35; (c) y=10.50.
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Fig. 1. Variation of the real and imaginary part of the first four eigenvalues versus crack position for “moderate”
damage (¢=0.08) and for different levels of damping. (a) Re(u,,,,)/Re(u,,), m=1-4; (b) Im(u,,,,)/Im(u,,,), m=1-4. Thin
solid line: y=0.05; thin dashed line: y=0.35; thick solid line: y=0.50.

increase of the imaginary part seems to be produced by cracks located in a small neighbourhood
of every zero-sensitivity point for the ideal undamped system and, in particular, it is more
pronounced for large values of damping coefficient 7.
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Table 2

Example of damage identification results (cases free of errors) for different damage severity € and damping coefficient y

Pair Damage D1 Damage D2 Damage D3

m—2m
Ok ek Ok &k Ok ek

(a)

1-2 0.406 0.020 0.430 0.090 *) *)
0.594 —0.014 0.570 —0.068 *) *)

2-4 0.099 —0.075 0.098 —0.250 0.098 —0.439
0.401 0.019 0.402 0.061 0.402 0.367
0.599 —0.012 0.598 —0.041 0.598 —0.247
0.901 0.008 0.902 0.027 0.902 0.048

3-6 0.069 0.124 0.074 0.566 0.078 1.903
0.264 —0.032 0.259 —0.162 0.255 —0.583
0.402 0.021 0.408 0.103 0.412 0.362
0.598 —0.014 0.592 —0.071 0.588 —0.253
0.736 0.012 0.741 0.057 0.745 0.200
0.931 —0.009 0.926 —0.045 0.922 —0.161

(b)

1-2 0.389 0.020 0.407 0.082 0.479 0.578
0.611 —0.013 0.593 —0.056 0.521 —0.531

2-4 0.100 —0.078 0.098 —0.257 0.098 —0.450
0.400 0.019 0.402 0.062 0.402 0.388
0.600 —0.012 0.598 —0.041 0.598 —0.260
0.900 0.008 0.902 0.026 0.902 0.044

3-6 0.069 0.127 0.074 0.585 0.087 1.781
0.264 —0.033 0.259 —0.167 0.246 —0.631
0.402 0.022 0.408 0.106 0.421 0.369
0.598 —0.014 0.592 —0.072 0.579 —0.267
0.736 0.011 0.741 0.057 0.754 0.205
0.931 —0.009 0.926 —0.045 0.913 —0.169

(©

1-2 0.370 0.022 0.384 0.084 0.424 0.216
0.630 —0.012 0.616 —0.051 0.576 —0.156

2-4 0.100 —0.081 0.099 —0.267 0.099 —0.465
0.400 0.020 0.401 0.063 0.401 0.416
0.600 —0.013 0.599 —0.040 0.599 —0.277
0.900 0.008 0.901 0.024 0.901 0.039

3-6 0.069 0.131 0.074 0.611 0.077 2.144
0.264 —0.034 0.259 —0.174 0.256 —0.644
0.403 0.022 0.408 0.110 0.410 0.401
0.597 —0.014 0.592 —0.074 0.590 —0.278
0.736 0.011 0.741 0.058 0.744 0.219
0.931 —0.008 0.926 —0.045 0.923 —0.175

Exact values 0.400 0.020 0.400 0.080 0.400 0.200

Determination of crack location o, and damage severity ¢ by using the pair {C5 2, Gy, P}, m=1, 2, 3, as data in
formulas (22) and (23). (a) y=0.05; (b) y=0.35; (c) y=0.50. The symbol (*) means imaginary solution.
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The results of identification based on the mth, 2 mth frequencies, m=1,2,3, are summed up in
Table 2. With reference to the localization of the cracked cross-section, the method proves
satisfactory. In fact, in the absence of errors, the set of solutions predicted by the theory for the
mathematical inverse problem contains (a satisfactory estimate of) the actual solution of the
damage location problem. Moreover, deviations from the exact damage location are quite stable
with respect to large variations of the damage severity and of the damping coefficient.
Discrepancies generally are smaller for less severe damages, and this behaviour is expected
because the inverse problem is formulated on the assumption that the damaged system is a
“small” perturbation of the virgin system. It is worth noticing that, according to the theory
developed in Section 3, half of the possible damage locations can be discarded because the
corresponding estimate of damage severity ¢ takes negative values.

The estimate for damage severity ¢ is less accurate and generally accuracy deteriorates when
more severe damages are considered. This trend was already observed in the papers [13,14] for the
undamped ideal case.

The analysis was developed in the absence of errors so far, but, as it is well known, the results of
most diagnostic techniques strictly depend on possible measurement and modelling errors. To
take into account the effect of errors in the experimental data, a comprehensive series of cases in
which eigenvalues were corrupted by some random noise was considered. To give an example of
the results obtained in this situation, Table 3 refers to the case ¢=0.400 in the presence of
random errors having peak values ranging linearly from 0.5% in the ideal value for the first
eigenvalue to 3% in the sixth eigenvalue, both on the real and imaginary part. As a general
remark, if eigenvalues used as data in identification are affected by errors being relatively small
with respect to the variations of the eigenvalues induced by damage, then damage identification
leads to satisfactory results. However, the analysis shows that the noise in the data is usually
amplified strongly and the estimates of damage parameters seem to be rather sensitive to input
errors.

5. Conclusions

This paper focused on detecting a single crack when damage-induced shifts in a pair of
eigenvalues of a longitudinally vibrating beam with damped boundary conditions are known. The
analysis is based on an explicit expression of the eigenvalue sensitivity to damage and the
damaged system is considered as a perturbation of the virgin system. For different sets of
boundary conditions it was shown how the knowledge of a suitable pair of eigenvalues might be
used to estimate the location of damage. The theoretical results are confirmed by a comparison
with numerical tests performed on cracked beams where eigenvalues were corrupted by some
random noise. This suggests that it may be possible to use the method in practical situations
including, in perspective, more complex damped vibrating systems, such as beams in bending
vibration, beams under less restrictive classes of damage and with damper devices with more
refined rheological behaviour. For these more complicated situations, testing the proposed
diagnostic technique on the basis of experimental data should be an important question to be
investigated.
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Table 3

Example of damage identification results in the presence of random errors on data

Pair Damage D1 Damage D2 Damage D3

m-2m
Ok ek Ok ek Ok ek

(a)

1-2 0.363 0.019 0.410 0.077 * *
0.637 —0.011 0.590 —0.054 * *

2-4 0.090 —0.077 0.094 —0.256 0.095 —0.450
0.410 0.017 0.406 0.059 0.405 0.361
0.590 —0.012 0.594 —0.041 0.595 —0.246
0.910 0.008 0.906 0.027 0.905 0.047

3-6 0.058 0.121 0.072 0.537 0.077 1.828
0.276 —0.025 0.261 —0.149 0.256 —0.554
0.391 0.018 0.406 0.096 0.411 0.345
0.609 —0.011 0.594 —0.065 0.589 —0.240
0.724 0.010 0.739 0.053 0.744 0.190
0.942 —0.007 0.928 —0.042 0.923 —0.154

(b)

1-2 0.352 0.027 0.385 0.082 0.437 0.229
0.648 —0.014 0.615 —0.051 0.563 —0.177

2-4 0.106 —0.083 0.101 —0.256 0.100 —0.443
0.394 0.022 0.399 0.063 0.400 0.386
0.606 —0.014 0.601 —0.041 0.600 —0.257
0.894 0.009 0.899 0.026 0.900 0.044

3-6 0.063 0.120 0.073 0.561 0.087 1.712
0.270 —0.028 0.260 —0.157 0.246 —0.606
0.396 0.019 0.406 0.100 0.421 0.354
0.604 —0.012 0.594 —0.068 0.579 —0.257
0.730 0.010 0.740 0.054 0.754 0.197
0.937 —0.008 0.927 —0.043 0913 —0.162

(©)

1-2 0.338 0.017 0.374 0.078 0.415 0.196
0.662 —0.008 0.626 —0.045 0.585 —0.137

2-4 0.064 —0.109 0.092 —0.268 0.096 —0.466
0.436 0.015 0.408 0.058 0.404 0.402
0.564 —0.012 0.592 —0.038 0.596 —0.271
0.936 0.006 0.908 0.022 0.904 0.038

3-6 0.078 0.143 0.077 0.635 0.078 2.211
0.256 —0.043 0.257 —0.189 0.255 —0.677
0.411 0.026 0.410 0.117 0.412 0.418
0.589 —0.018 0.590 —0.080 0.588 —0.291
0.744 0.014 0.743 0.062 0.745 0.229
0.922 —0.010 0.923 —0.049 0.922 —0.184

Exact values 0.400 0.020 0.400 0.080 0.400 0.200

Determination of crack location o, and damage severity ¢ by using the pair {C5 2, Gy, P}, m=1, 2, 3, as data in
formulas (22) and (23). (a) y=0.05; (b) y=0.35; (c) y=0.50. The symbol (*) means imaginary solution.
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Appendix A

The aim of this appendix is to provide some details on the derivation of the TF expression (34)
for an F-D vibrating rod. For vibrating systems described by self-adjoint boundary value
problems, the determination of TF is a standard issue. Due to energy dissipation at the boundary
point z = L, the system under investigation is non-self-adjoint. So, conventional modal analysis
techniques based on ecigenfunctions expansion are not directly applicable to obtain a TF
expression. Here, the study of the dynamic problem (1)—(3) is formulated within the semigroup
theory. Notations are the same as in Section 2. Following Veselic [6], set

" w
U= (v) =\ ow | (A.1)
ot
Then Egs. (1)-(3) can be reformulated as the homogeneous evolution problem
du +AU=0, >0, (A.2)
dt
with boundary conditions
u'(0) =0, (A.3)
EAW (L) + cv(L) = 0, (A4)
where operator A is formally given by the differential expression
0 -1
A=| E4d? . (A.5)
— 0

Let H = H'(0, L) x L*(0, L) be the Hilbert space equipped with the usual scalar product given by
L ;- L _ L _ U (75) .
Uy, Uy = [y ujity + [y wiits + [y 0102 for every U; = (UI >, U, = <v2> belonging to H. Here,

H*(0, L), k a non-negative integer, is the Sobolev space of functions defined on (0,L) with square
summable derivatives up to the kth order.

Let D(A) = {(f,9)e H|f e H*(0,L),ge H'(0, L), EAf'(L) + cg(L) = 0,f'(0) = 0}. It is easily seen
that A : D(A)c H — H is a monotonic dissipative operator, so that problem (A.2)—(A.4) generates
a contractive semigroup, whose generator A has the resolvent (11 + A)~! given by

AL, + @, r;

1+A) "=
AT, +.P,—1 Al

: (A.6)
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where 4 is a complex number and

L
() = /0 Gz 0) dy, (A7)

(D[ D(z) = cf( L)Cosh V/p/EA)z

IN(AL) (A8)
Gio.n) Vp/EA| M(AL — z))cosh\/p/EALy, 0<y<z, (A9)
\Z, = .
Y =UNGL) ML — y))coshy/p/EAJz, z<y<L,

M(0) = \/pEA cosh\/p/EA0O + c¢sinh+/p/EA0, (A.10)

N(0) = \/pEA sinh\/p/EAQ + ¢ coshv/p/EA0. (A.11)

Therefore, by applying standard results in the semigroup theory (e.g., the Hille—Yosida Theorem,
Ref. [18]), it can be proved that for every Uye D(A) there exists a unique solution of (A.2)—(A.4)

satisfying the initial condition
0
voy =[O v,
v(0)

Moreover, for every sufficiently regular F(¢), there exists a unique solution for the non-
homogeneous problem

dU
E‘FAU—F(I), t>0, (A.12)
U(0) = Uy,

see Ref. [18].

To determine, for example, the frequency response function (FRF) receptance term
H(iw,z,,2> = L) an harmonic load f(¢) = fye'®" can be applied at the right end of the beam,
z,=L, and the axial response displacement can be measured after a sufficiently large moment of
time at another (possibly coincident) point of abscissa z;. The corresponding dynamic problem is
described by Eq. (A.12); with initial conditions (A.12), and with

. 0
F — F 1wt F —
(1) = Foe'”,  Fo <f06y(L)>’

where 6,(L) is the Dirac delta at the right end y = L. Since the system is governed by a dissipative
operator, it can be shown that (for 1— c0) there exists a steady state motion

U0 = (

U(1) = (i1 + A)'Fpel. (A.13)

S
N———
<
11l

| QD
=, =

given by
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By recalling expression (A.6) of the resolvent (A1 +A)~!, 1 =iw, it turns out that
(1) = Ti(8,(L)foe”, (A.14)

that is, the FRF between the excitation point z, =L and any point of abscissa z; is given by the

expression
p cosh(\/(p/EA)iwz) 1
iw V/pEA sinh(y/(p/EA)iwL) + ¢ cosh(y/(p/EA)iwL)
(A.15)

H(iw,z1,z0 =L) =

The corresponding TF of the rod formally coincides with the previous expression (A.15), where
the variable iw is replaced by the complex variable s. To obtain the analogue of the “classical” TF
for self-adjoint systems expressed by an infinite series, it is convenient to rewrite the right factor
on the right half-side of (A.15) in the following form:

1 B 2¢!

- = . A.16
sinhs+ycoshs (1 — )9 —1) ( )
where s is a complex number. Then, application of the identity
1
- A.17
©—1) 21 Z (P + 4n27r2) A.17)

with #=2(s—¢) leads to the desired expression (34), see Ref. [19, p. 113]. Expression (34)
represents a closed-form expression of the TF of the rod, see also Ref. [20] for closed-form
evaluation of the TF of (even more general) distributed parameter systems via Laplace transform
of the Green system function.
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